Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels
نویسندگان
چکیده
We consider regularized risk minimization in a large dictionary of Reproducing kernel Hilbert Spaces (RKHSs) over which the target function has a sparse representation. This setting, commonly referred to as Sparse Multiple Kernel Learning (MKL), may be viewed as the non-parametric extension of group sparsity in linear models. While the two dominant algorithmic strands of sparse learning, namely convex relaxations using l1 norm (e.g., Lasso) and greedy methods (e.g., OMP), have both been rigorously extended for group sparsity, the sparse MKL literature has so far mainly adopted the former with mild empirical success. In this paper, we close this gap by proposing a Group-OMP based framework for sparse MKL. Unlike l1-MKL, our approach decouples the sparsity regularizer (via a direct l0 constraint) from the smoothness regularizer (via RKHS norms), which leads to better empirical performance and a simpler optimization procedure that only requires a black-box single-kernel solver. The algorithmic development and empirical studies are complemented by theoretical analyses in terms of Rademacher generalization bounds and sparse recovery conditions analogous to those for OMP [27] and Group-OMP [16].
منابع مشابه
Sparse Representations for Image Classification: Learning Discriminative and Reconstructive Non-parametric Dictionaries
A framework for learning optimal dictionaries for simultaneous sparse signal representation and robust class classification is introduced in this paper. This problem for dictionary learning is solved by a class-dependent supervised simultaneous orthogonal matching pursuit, which learns the intra-class structure while increasing the inter-class discrimination, interleaved with an efficient dicti...
متن کاملDiscriminative Training of Structured Dictionaries via Block Orthogonal Matching Pursuit
It is well established that high-level representations learned via sparse coding are effective for many machine learning applications such as denoising and classification. In addition to being reconstructive, sparse representations that are discriminative and invariant can further help with such applications. In order to achieve these desired properties, this paper proposes a new framework that...
متن کاملA New Approach to Sparse Image Representation Using MMV and K-SVD
This paper addresses the problem of image representation based on a sparse decomposition over a learned dictionary. We propose an improved matching pursuit algorithm for Multiple Measurement Vectors (MMV) and an adaptive algorithm for dictionary learning based on multi-Singular Value Decomposition (SVD), and combine them for image representation. Compared with the traditional K-SVD and orthogon...
متن کاملOn the Support Recovery of Jointly Sparse Gaussian Sources using Sparse Bayesian Learning
Abstract—In this work, we provide non-asymptotic, probabilistic guarantees for successful sparse support recovery by the multiple sparse Bayesian learning (M-SBL) algorithm in the multiple measurement vector (MMV) framework. For joint sparse Gaussian sources, we show that M-SBL perfectly recovers their common nonzero support with arbitrarily high probability using only finitely many MMVs. In fa...
متن کاملThe Stability of Regularized Orthogonal Matching Pursuit Algorithm
This paper studies a fundamental problem that arises in sparse representation and compressed sensing community: can greedy algorithms give us a stable recovery from incomplete and contaminated observations ? Using the Regularized Orthogonal Matching Pursuit (ROMP) algorithm, a modified version of Orthogonal Matching Pursuit (OMP) [1], which was recently introduced by D.Needell and R.Vershynin [...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011